Effects of Mixed Yeast Fermentation on Volatile Compounds Composition of Arabica Coffee Beans
Whitney Jovanka Utami(1), Dian Anggraini Suroto(2), Francis Maria Constance Sigit Setyabudi(3*), Alyssa Putri Davinia(4), Dyah Sekar Purnama Ratri(5)
(1) Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(2) Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(3) Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(4) Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(5) Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(*) Corresponding Author
Abstract
Coffee is part of the most highly valued agricultural commodities, and fermentation is an alternative method to enhance the quality of coffee beans. Therefore, this study aimed to assess the effects of Wickerhamomyces anomalus and Kluyveromyces lactis on the fermentation of Arabica coffee, particularly the contributions to volatile compounds formed in roasted beans. The fermentation process was further carried out by incorporating W. anomalus and K. lactis for 48 hours at room temperature. The results showed that fermenting for 12 hours with mixed yeast inoculation significantly increased the total yeast count and volatile compounds. Additionally, the fermentation of Arabica coffee with mixed yeast inoculation at a 1:1 ratio produced the highest total titratable acidity and yeast count. The release of volatile compounds varied based on the activity of the microorganisms with the highest concentrations of naphthalene, α-himachalene, toluene 2, 4-diamine, and 3-pentanol detected in the samples. These results suggested that fermenting Arabica coffee with W. anomalus and K. lactis not only enhanced bean quality but also held promise for industrial application.
Keywords
Full Text:
PDFReferences
AOAC. (1995). Official Method of Analysis of AOAC International, 16th Edition. In AOAC International (pp. 1–300).
Avallone, S., Guyot, B., Brillouet, J. M., Olguin, E., & Guiraud, J. P. (2001). Microbiological and biochemical study of coffee fermentation. Current Microbiology, 42(4), 252–256. https://doi.org/10.1007/s002840110213
Azizah, M., Sutamihardja, R., & Wijaya, N. (2019). Karakteristik Kopi Bubuk Arabika (Coffea arabica L) Terfermentasi Saccharomyces cerevisiae. Jurnal Sains Natural, 9(1), 37. https://doi.org/10.31938/jsn.v9i1.173
Bressani, A. P. P., Martinez, S. J., Evangelista, S. R., Dias, D. R., & Schwan, R. F. (2018). Characteristics of fermented coffee inoculated with yeast starter cultures using different inoculation methods. LWT - Food Science and Technology, 92(February), 212–219. https://doi.org/10.1016/j.lwt.2018.02.029
Bressani, A. P. P., Martinez, S. J., Sarmento, A. B. I., Borém, F. M., & Schwan, R. F. (2020). Organic acids produced during fermentation and sensory perception in specialty coffee using yeast starter culture. Food Research International, 128(October 2019), 108773. https://doi.org/10.1016/j.foodres.2019.108773
Caporaso, N., Whitworth, M. B., Cui, C., & Fisk, I. D. (2018). Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Research International, 108, 628–640. https://doi.org/10.1016/j.foodres.2018.03.077
Cassimiro, D. M. de J., Batista, N. N., Fonseca, H. C., Naves, J. A. O., Dias, D. R., & Schwan, R. F. (2022). Coinoculation of lactic acid bacteria and yeasts increases the quality of wet fermented Arabica coffee. International Journal of Food Microbiology, 369(March). https://doi.org/10.1016/j.ijfoodmicro.2022.109627
Darwin, Mahyudi, R., Sundari, D., & Muliawati, A. (2021). Influence of solid-state fermentation on Robusta coffee (Coffea cannephora) beans inoculated with microbial culture of civet fecal suspensions. Research on Crops, 22(4), 968–976. https://doi.org/10.31830/2348-7542.2021.158
de Melo Pereira, G. V., de Carvalho Neto, D. P., Magalhães Júnior, A. I., Vásquez, Z. S., Medeiros, A. B. P., Vandenberghe, L. P. S., & Soccol, C. R. (2019). Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. Food Chemistry, 272, 441–452. https://doi.org/10.1016/j.foodchem.2018.08.061
Dippong, T., Dan, M., Kovacs, M. H., Kovacs, E. D., Levei, E. A., & Cadar, O. (2022). Analysis of Volatile Compounds , Composition , and Thermal Roasting Intensity. Foods, 11, 2–15.
Elhalis, H., Cox, J., Frank, D., & Zhao, J. (2020). The crucial role of yeasts in the wet fermentation of coffee beans and quality. International Journal of Food Microbiology, 333(May), 108796. https://doi.org/10.1016/j.ijfoodmicro.2020.108796
Elhalis, H., Cox, J., Frank, D., & Zhao, J. (2021a). Microbiological and Chemical Characteristics of Wet Coffee Fermentation Inoculated With Hansinaspora uvarum and Pichia kudriavzevii and Their Impact on Coffee Sensory Quality. Frontiers in Microbiology, 12(August), 1–13. https://doi.org/10.3389/fmicb.2021.713969
Elhalis, H., Cox, J., Frank, D., & Zhao, J. (2021b). The role of wet fermentation in enhancing coffee flavor, aroma and sensory quality. European Food Research and Technology, 247(2), 485–498. https://doi.org/10.1007/s00217-020-03641-6
Elhalis, H., Cox, J., & Zhao, J. (2020). Ecological diversity, evolution and metabolism of microbial communities in the wet fermentation of Australian coffee beans. International Journal of Food Microbiology, 321(November 2019), 108544. https://doi.org/10.1016/j.ijfoodmicro.2020.108544
Fan, G., Teng, C., Xu, D., Fu, Z., Liu, P., Wu, Q., Yang, R., & Li, X. (2019). Improving ethyl acetate production in baijiu manufacture by wickerhamomyces anomalus and saccharomyces cerevisiae mixed culture fermentations. BioMed Research International, 2019. https://doi.org/10.1155/2019/1470543
Galarza, G., & Figueroa, J. G. (2022). Volatile Compound Characterization of Coffee (Coffea arabica) Processed at Different Fermentation Times Using SPME–GC–MS. Molecules, 27(6). https://doi.org/10.3390/molecules27062004
Haile, M., & Kang, W. H. (2019). The Role of Microbes in Coffee Fermentation and Their Impact on Coffee Quality. Journal of Food Quality, 2019. https://doi.org/10.1155/2019/4836709
Krajangsang, S., Seephin, P., Tantayotai, P., Mahingsapun, R., Meeampun, Y., Panyachanakul, T., Samosorn, S., Dolsophon, K., Jiamjariyatam, R., Lorliam, W., & Srisuk, N. (2022). New approach for screening of microorganisms from Arabica coffee processing for their ability to improve Arabica coffee flavor. 3 Biotech, 12(7), 1–11. https://doi.org/10.1007/s13205-022-03203-5
Kwak, H. S., Jeong, Y., & Kim, M. (2018). Effect of Yeast Fermentation of Green Coffee Beans on Antioxidant Activity and Consumer Acceptability. Journal of Food Quality, 2018. https://doi.org/10.1155/2018/5967130
Mahingsapun, R., Tantayotai, P., Panyachanakul, T., Samosorn, S., Dolsophon, K., Jiamjariyatam, R., Lorliam, W., Srisuk, N., & Krajangsang, S. (2022). Enhancement of Arabica coffee quality with selected potential microbial starter culture under controlled fermentation in wet process. Food Bioscience, 48(May), 101819. https://doi.org/10.1016/j.fbio.2022.101819
Martinez, S. J., Bressani, A. P. P., Dias, D. R., Simão, J. B. P., & Schwan, R. F. (2019). Effect of bacterial and yeast starters on the formation of volatile and organic acid compounds in coffee beans and selection of flavors markers precursors during wet fermentation. Frontiers in Microbiology, 10(JUN). https://doi.org/10.3389/fmicb.2019.01287
Nasanit, R., & Satayawut, K. (2015). Microbiological study during coffee fermentation of Coffea arabica var. chiangmai 80 in Thailand. Kasetsart Journal - Natural Science, 49(1), 32–41.
Preedy, V. R. (2015). Coffee in Health and Disease Prevention. Academic Press.
Price, E. J., Linforth, R. S. T., Dodd, C. E. R., Phillips, C. A., Hewson, L., Hort, J., & Gkatzionis, K. (2014). Study of the influence of yeast inoculum concentration (Yarrowia lipolytica and Kluyveromyces lactis) on blue cheese aroma development using microbiological models. Food Chemistry, 145, 464–472. https://doi.org/10.1016/j.foodchem.2013.08.081
Santosa, K. M., Supriyadi, Anggrahini, S., & Rahmadian, Y. (2021). Sensory Analysis, Caffeine, Chlorogenic Acid and Non=Volatile Taste Compounds of Arabica Coffee (Coffeea arabica) Fermented with Sugar Addition for Brew Taste. Indonesian Food and Nutrition Progress, 17(2), 37–44. https://doi.org/10.22146/ifnp.58664
Sinaga, H. L. R., Bastian, F., & Syarifuddin, A. (2021). Effect of decaffeination and re-fermentation on level of caffeine, chlorogenic acid and total acid in green bean robusta coffee. IOP Conference Series: Earth and Environmental Science, 807(2). https://doi.org/10.1088/1755-1315/807/2/022069
Šipošová, P., Koňuchová, M., Valík, Ľ., & Medveďová, A. (2021). Growth dynamics of lactic acid bacteria and dairy microscopic fungus Geotrichum candidum during their co-cultivation in milk. Food Science and Technology International, 27(6), 572–582. https://doi.org/10.1177/1082013220976485
Smakman, F., & Hall, A. R. (2022). Exposure to lysed bacteria can promote or inhibit growth of neighboring live bacteria depending on local abiotic conditions. FEMS Microbiology Ecology, 98(2), 1–10. https://doi.org/10.1093/femsec/fiac011
Várady, M., Tauchen, J., Fraňková, A., Klouček, P., & Popelka, P. (2022). Effect of method of processing specialty coffee beans (natural, washed, honey, fermentation, maceration) on bioactive and volatile compounds. Lwt, 172(December). https://doi.org/10.1016/j.lwt.2022.114245
Wang, C., Sun, J., Lassabliere, B., Yu, B., & Liu, S. Q. (2020a). Coffee flavour modification through controlled fermentation of green coffee beans by Lactococcus lactis subsp. cremoris. LWT - Food Science and Technology, 120(November 2019). https://doi.org/10.1016/j.lwt.2019.108930
Wang, C., Sun, J., Lassabliere, B., Yu, B., & Liu, S. Q. (2020b). Coffee flavour modification through controlled fermentation of green coffee beans by Lactococcus lactis subsp. cremoris. Lwt, 120(December 2019). https://doi.org/10.1016/j.lwt.2019.108930
Yang, S., Mei, X. D., Zhang, X. F., Li, Y. F., She, D., Zhang, T., & Ning, J. (2017). Attraction of Coffee Bean Weevil, Araecerus fasciculatus, to Volatiles from the Industrial Yeast Kluyveromyces lactis. Journal of Chemical Ecology, 43(2), 180–187. https://doi.org/10.1007/s10886-016-0809-5
Yin, H., Bultema, J. B., Dijkhuizen, L., & van Leeuwen, S. S. (2017). Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chemistry, 225, 230–238. https://doi.org/10.1016/j.foodchem.2017.01.030
Zakidou, P., Plati, F., Matsakidou, A., Varka, E. M., Blekas, G., & Paraskevopoulou, A. (2021). Single origin coffee aroma: From optimized flavor protocols and coffee customization to instrumental volatile characterization and chemometrics. Molecules, 26(15). https://doi.org/10.3390/molecules26154609
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Francis M.C. Sigit Setyabudi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
agriTECH has been Indexed by:
agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.







