Analyzing the Characteristics of Fishbone Powder Derived from Pangasius sp., Thunnus tonggol, and Thunnus albacares as Food Fortificant
Hilda Novianty(1*), Ardiba Rakhmi Sefrienda Rakhmi Sefrienda(2), Jasmadi Jasmadi(3)
(1) Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Jl. Yogya Wonosari, Km. 31.5, Gunungkidul, Yogyakarta 55861
(2) Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Jl. Yogya Wonosari, Km. 31.5, Gunungkidul, Yogyakarta 55861
(3) Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Jl. Yogya Wonosari, Km. 31.5, Gunungkidul, Yogyakarta 55861
(*) Corresponding Author
Abstract
Pangasius sp., Thunnus tonggol (T. tonggol), and Thunnus albacares (T. albacares) are high-value commercial species widely used in fillet production, generating by-products, such as fishbone. The fishbone, rich in calcium (CA) and phosphorus (P), offers a valuable alternative for daily Ca intake. Using such by-products as a potential source of Ca presents a viable solution, offering food-fortificant ingredients applicable in various food products. Therefore, this study examined the physical and chemical properties of fishbone powder derived from Pangasius sp., T. tonggol, and T. albacares. The products preparations were subjected to cooking, autoclaving, pulverization, homogenization, drying, and grinding. The physical and chemical analysis of fishbone powder showed that T. tonggol and T. albacares had a darker color compared to Pangasius sp., with higher protein content and likely stimulation of a Maillard reaction during the drying process. All species maintained a neutral pH range, and their particle sizes significantly differed (p< 0.05), ranging from nm to µm. SEM images showed irregularly shaped and agglomerated particles in all fish species. The ash content was 54.35 g/100 g (Pangasius sp.), 53.62 g/100 g (T. tonggol), and 52.28 g/100 g (T. albacares), showing high mineral content, particularly in Ca exceeding 40%. The analysis of a Fourier transform infrared spectroscopy (FT-IR) showed carbonate and phosphate peaks, representing the presence of calcium salts. Based on the evaluation, fishbone powder for each species had the potential to serve as food fortificant.
Keywords
Full Text:
PDFReferences
Amaral Corrêa, T. H., & França Holanda, J. N. (2019). Fish bone as a source of raw material for synthesis of calcium phosphate. Materials Research, 22, 1–5. https://doi.org/10.1590/1980-5373-MR-2019-0486
Amitha, Raju, C. ., Lakshmisha, Raju, I. ., Kumar, P. A., Sarojini, A., Gajendra, & Pal, J. (2019). Nutritional composition of fish bone powder extracted from three different fish filleting waste boiling with water and an alkaline media. International Journal of Current Microbiology and Applied Sciences, 8(02), 2942–2948. https://doi.org/10.20546/ijcmas.2019.802.342
Anonim. (2015). Requirements to Measurements of Nanomaterials and Nanoproducts (J. Garnæs, L. Nielson, E. Jacobsen, M. Køcks, P. B. Pedersen, & P. Wahlberg (eds.); Issue 1). The Danish Environmental Protection Agency. http://www2.mst.dk/Udgiv/publications/2016/12/978-87-93352-95-7.pdf
AOAC. (2005). Official methods of analysis. In W. Horwitz & G. W. Latimer (Eds.), AOAC International (18th ed.). AOAC International.
Asikin, A. N., Kusumaningrum, I., & Hidayat, T. (2019). Effect of knife-fish bone powder addition on characteristics of starch and seaweed kerupuk as calcium and crude fiber sources. Current Research in Nutrition and Food Science, 7(2), 584–599. https://doi.org/10.12944/CRNFSJ.7.2.27
Baycar, A., Konar, N., Goktas, H., Sagdic, O., & Polat, D. G. (2022). The effects of beetroot powder as a colorant on the color stability and product quality of white compound chocolate and chocolate spread. Food Science and Technology (Brazil), 42. https://doi.org/10.1590/fst.66220
Benjakul, S., & Karnjanapratum, S. (2018). Characteristics and nutritional value of whole wheat cracker fortified with tuna bone bio-calcium powder. Food Chemistry, 259(November 2017), 181–187. https://doi.org/10.1016/j.foodchem.2018.03.124
Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., De Carlos, A., & León, B. (2012). Biological hydroxyapatite obtained from fish bones. Materials Science and Engineering C, 32(3), 478–486. https://doi.org/10.1016/j.msec.2011.11.021
BPS. (2022). Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut HS: Vol. Oktober 20 (Issue Katalog 8202019).
Carvalho, P. M., Felício, M. R., Santos, N. C., Gonçalves, S., & Domingues, M. M. (2018). Application of light scattering techniques to nanoparticle characterization and development. Frontiers in Chemistry, 6(June), 1–17. https://doi.org/10.3389/fchem.2018.00237
Cebeci, A., Yaman, M., Yalcin, B., & Gunes, F. E. (2020). Determination of carbohydrate amounts of various cheese types presented to sale in the market Determination of carbohydrate amounts of various cheese types presented to sale in the market. 5(6), 30–35. www.foodsciencejournal.com
Choěl, M., Deboudt, K., Osán, J., Flament, P., & Van Grisken, R. (2005). Quantitative determination of low-Z elements in single atmospheric particles on boron substrates by automated scanning electron microscopy-energy-dispersive X-ray spectrometry. Analytical Chemistry, 77(17), 5686–5692. https://doi.org/10.1021/ac050739x
Cormick, G., & Belizán, J. M. (2019). Calcium intake and health. Nutrients, 11(7), 1–16. https://doi.org/10.3390/nu11071606
Cui, Y., Yang, L., Lu, W., Yang, H., Zhang, Y., Zhou, X., Ma, Y., Feng, J., & Shen, Q. (2021). Effect of steam explosion pretreatment on the production of microscale tuna bone power by ultra-speed pulverization. Food Chemistry, 347(January). https://doi.org/10.1016/j.foodchem.2021.129011
Desai, A., Brennan, M. A., & Brennan, C. S. (2018). The effect of semolina replacement with protein powder from fish (Pseudophycis bachus) on the physicochemical characteristics of pasta. Lwt, 89, 52–57. https://doi.org/10.1016/j.lwt.2017.10.023
Desrida, Afriwardi, & Kadri, H. (2017). Hubungan Tingkat Aktivitas. Jurnal Kesehatan Andalas, 6(3), 572–580. https://doi.org/DOI: https://doi.org/10.25077/jka.v6i3.740
FAO. (2021a). 1 st issue : Globefish highlights (a quarterly update on world seafood markets). https://doi.org/ISBN : 978-92-5-134209-1
FAO. (2021b). 3rd issue : GLOBEFISH highlights – international markets on fisheries and aquaculture products - quarterly update.
Febriani, H. N., Rochima, E., Rostini, I., & Pratama, R. I. (2021). Pangasius Bone Powder (Definition, Production, Analysis Physicochemical Characteristics and Potency): A Review. Asian Journal of Fisheries and Aquatic Research, 13(6), 1–9. https://doi.org/10.9734/ajfar/2021/v13i630279
Feng, X., Zhang, H., & Yu, P. (2020). X-ray fluorescence application in food, feed, and agricultural science: a critical review. Critical Reviews in Food Science and Nutrition, 61(6), 1–11. https://doi.org/10.1080/10408398.2020.1776677
Handayani, D. L., E, S. M. E., Ashari, T. A., & Jumadi. (2020). Preliminary research : Utilization of Gourami fish bone flour (Osphronemus gouramy) in making calcium dumplings. JPIK, 12(2), 302–307. https://doi.org/10.20473/jipk.v12i2.19572
Harmain, R.M., F. A. D. and R. H. (2018). Nanocalcium characterization of Cakalang fish bone flour (Katsuwonus pelamis L). International Journal of Innovative Science and Reasearch Technology, 3(10), 306–308.
Hizbullah, H. H., Sari, N. K., Nurhayati, T., & Nurilmala, M. (2019). Quality changes of little tuna fillet (Euthynnus affinis) during chilling temperature storage. IOP Conference Series: Earth and Environmental Science, 404(1). https://doi.org/10.1088/1755-1315/404/1/012015
Idowu, A. T., Benjakul, S., Sinthusamran, S., Sae-leaw, T., Suzuki, N., Kitani, Y., & Sookchoo, P. (2020). Effect of alkaline treatment on characteristics of bio-calcium and hydroxyapatite powders derived from Salmon Bone. Applied Sciences (Switzerland), 10(12), 4141. https://doi.org/10.3390/APP10124141
Kannaiyan, S. K., Bagthasingh, C., Vetri, V., Aran, S. S., & Venkatachalam, K. (2019). Nutritional, textural and quality attributes of white and dark muscles of little tuna (Euthynnus affinis). Indian Journal of Geo-Marine Sciences, 48(2), 205–211.
KKP. (2020). Laporan Tahunan Kementerian Kelautan dan Perikanan 2020. In Kementerian Kelautan dan Perikanan.
Liu, S., Sun, H., Ma, G., Zhang, T., Wang, L., Pei, H., Li, X., & Gao, L. (2022). Insights into flavor and key influencing factors of Maillard reaction products: A recent update. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.973677
Liu, X., Xia, B., Teng Hu, L., Jing Ni, Z., Thakur, K., & Jun wei, Z. (2020). Maillard conjugates and their potential in food and nutritional industries: A review. Food Frontiers, 1(4), 382–397. https://doi.org/10.1002/fft2.43
Mancini, R. A., & Hunt, M. C. (2005). Current research in meat color. Meat Science, 71(1), 100–121. https://doi.org/10.1016/j.meatsci.2005.03.003
Mariotti, F., Tomé, D., & Mirand, P. P. (2008). Converting nitrogen into protein - Beyond 6.25 and Jones’ factors. Critical Reviews in Food Science and Nutrition, 48(2), 177–184. https://doi.org/10.1080/10408390701279749
Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97–118. https://doi.org/10.17509/ijost.v4i1.15806
Nawaz, A., Li, E., Irshad, S., HHM, H., Liu, J., Shahbaz, H. M., Ahmed, W., & Regenstein, J. M. (2020). Improved effect of autoclave processing on size reduction, chemical structure, nutritional, mechanical and in vitro digestibility properties of fish bone powder. Advanced Powder Technology, 31(6), 2513–2520. https://doi.org/10.1016/j.apt.2020.04.015
Nawaz, A., Xiong, Z., Xiong, H., Chen, L., Wang, P. kai, Ahmad, I., Hu, C., Irshad, S., & Ali, S. W. (2018). The effects of fish meat and fish bone addition on nutritional value, texture and microstructure of optimised fried snacks. International Journal of Food Science and Technology, 54(4), 1045–1053. https://doi.org/10.1111/ijfs.13974
Nemati, M., Huda, N., & Ariffin, F. (2017). Development of calcium supplement from fish bone wastes of yellowfin tuna (Thunnus albacares) and characterization of nutritional quality. International Food Research Journal, 24(6), 2419–2426. http://www.ifrj.upm.edu.my
Ooi, D. J., Iqbal, S., & Ismail, M. (2012). Proximate composition, nutritional attributes and mineral composition of Peperomia pellucida L. (ketumpangan air) grown in Malaysia. Molecules, 17(9), 11139–11145. https://doi.org/10.3390/molecules170911139
Palacios, C., Cormick, G., Hofmeyr, G. J., Garcia-Casal, M. N., Peña-Rosas, J. P., & Betrán, A. P. (2021). Calcium-fortified foods in public health programs: considerations for implementation. Annals of the New York Academy of Sciences, 1485(1), 3–21. https://doi.org/10.1111/nyas.14495
Putri, H. D., Elfidasari, D., & Sugoro, I. (2020). Nutritional content of bone flour made from Plecos Fish Pterygoplichthys pardalis from the Ciliwung river , Indonesia. 12(3), 329–334. https://doi.org/http://dx.doi.org/10.15294/biosaintifika.v12i3.23881
Qin, X., Shen, Q., Guo, Y., Liu, J., Zhang, H., Jia, W., Xu, X., & Zhang, C. (2022). An advanced strategy for efficient recycling of bovine bone: Preparing high-valued bone powder via instant catapult steam-explosion. Food Chemistry, 374(November 2021), 131614. https://doi.org/10.1016/j.foodchem.2021.131614
Ramadhan, A., Suwandi, R., & Trilaksani, W. (2016). Competitiveveness Strategies of Indonesia Pangasius Fillet. Indonesian Journal of Business and Entrepreneurship, 2(2), 82–92. https://doi.org/10.17358/ijbe.2.2.82
Savlak, N., Çağındı, Ö., Erk, G., Öktem, B., & Köse, E. (2020). Treatment method affects color, chemical, and mineral composition of Seabream (Sparus aurata) fish bone powder from by-products of fish fillet. Journal of Aquatic Food Product Technology, 29(6), 592–602. https://doi.org/10.1080/10498850.2020.1775742
Shanshan, N. M. (2016). The possibility for using fish bone powder to supplement some kinds of biscuits. Journal of Food and Dairy Sciences, 7(1), 27–32. https://doi.org/10.21608/jfds.2016.42791
Shkembi, B., & Huppertz, T. (2022). Calcium absorption from food products: Food matrix effects. Nutrients, 14(1), 1–31. https://doi.org/10.3390/nu14010180
Shlisky, J., Mandlik, R., Askari, S., Abrams, S., Belizan, J. M., Bourassa, M. W., Cormick, G., Driller-Colangelo, A., Gomes, F., Khadilkar, A., Owino, V., Pettifor, J. M., Rana, Z. H., Roth, D. E., & Weaver, C. (2022). Calcium deficiency worldwide: prevalence of inadequate intakes and associated health outcomes. Annals of the New York Academy of Sciences, 1512(1), 10–28. https://doi.org/10.1111/nyas.14758
Simbolon, N. P. E., Setiani, B. E., & Legowo, A. M. (2019). Estimation of Shelf Life Pasta Spice for Dekke Mas Na Niura with the Accelerated Shelf Life Test (ASLT) Method Arrhenius Equation. Journal of Applied Food Technology, 6(2), 22–27. https://doi.org/10.17728/jaft.5170
Sugianto, R., Titus, J., & Siagian, M. (2014). Risk factors of low peak bone mass in Indonesian women. Jurnal Gizi Klinik Indonesia, 11(2), 78. https://doi.org/10.22146/ijcn.19010
Sumarto, Desmelati, Sari, N. I., Angraini, R. M., & Arieska, L. (2021). Characteristic of Nano-Calcium Bone from a Different Species of Catfish (Pangasius hypophthalmus, Clarias batrachus, Hemibagrus nemurus and Paraplotosus albilabris). IOP Conference Series: Earth and Environmental Science, 695(1), 0–8. https://doi.org/10.1088/1755-1315/695/1/012055
Talib, A., Suprayitno, E., Aulani’am, & Hardoko. (2014). Physico-chemical properties of Madidihang (Thunnus albacares Bonnaterre) fish bone flour in Ternate, North Moluccas. International Journal of Biosciences (IJB), 6655, 22–30. https://doi.org/10.12692/ijb/4.10.22-30
Yin, T., Park, J. W., & Xiong, S. (2015). Physicochemical properties of nano fish bone prepared by wet media milling. Lwt, 64(1), 367–373. https://doi.org/10.1016/j.lwt.2015.06.007
Yin, T., Park, J. W., & Xiong, S. (2017). Effects of micron fish bone with different particle size on the properties of silver carp (Hypophthalmichthys molitrix) surimi gels. Journal of Food Quality, 2017. https://doi.org/10.1155/2017/8078062
DOI: https://doi.org/10.22146/agritech.79972
Article Metrics
Abstract views : 1323 | views : 1797Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Hilda Novianty, Ardiba Rakhmi Sefrienda Rakhmi Sefrienda, Jasmadi Jasmadi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
agriTECH has been Indexed by:
agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.