Sorghum (Sorghum bicolor L. Moench var. bioguma) Cookies (SoKis): Source of Antioxidant and Prebiotic

https://doi.org/10.22146/agritech.87733

Dwiki Maycellino Wiryawan(1), Catarina Aprilia Ariestanti(2*), Aniek Prasetyaningsih(3)

(1) Departement of Biology, Faculty of Biotechnology, Universitas Kristen Duta Wacana, Jl. Dr. Wahidin Sudirohusodo No. 5-25, Kotabaru, Kec. Gondokusuman, Yogyakarta 55224
(2) Departement of Biology, Faculty of Biotechnology, Universitas Kristen Duta Wacana, Jl. Dr. Wahidin Sudirohusodo No. 5-25, Kotabaru, Kec. Gondokusuman, Yogyakarta 55224
(3) Departement of Biology, Faculty of Biotechnology, Universitas Kristen Duta Wacana, Jl. Dr. Wahidin Sudirohusodo No. 5-25, Kotabaru, Kec. Gondokusuman, Yogyakarta 55224
(*) Corresponding Author

Abstract


Sorghum bicolor L. Moench,  locally called “cantel,” is an underused local food in Indonesia, which contains resistant starch and has the potential to act as prebiotic. Several studies have also reported the role of its phytochemical compounds as antioxidants. Therefore, this study aims to determine the potential of sorghum as a source of antioxidants and prebiotic in cookies products. Sorghum was dried under various temperatures (40, 55, and 70 °C) for 4 h, ground into flour, and used in cookies production to replace wheat flour (WF) in various ratios of sorghum flour (SF):WF (0:100, 25:75, 50:50, 75:25, 100:0 % (w/w)). Phytochemical compounds were tested using the maceration method and qualitatively by assessing the color change and physical appearance of SF. Antioxidants activity was analyzed using the 1,1-diphenyl-2- picrylhydrazyl (DPPH) method, while nutritional content was determined with proximate analyses. The total plate count (TPC) method was carried out to assess the growth of Bifidobacterium longum, and organoleptic test (n = 30) was performed using 5 points-hedonic scale. SF with a drying temperature of 55˚C was used as an ingredient for making cookies based on its moisture content (4.24 ± 0.084) and antioxidant activity value (70.77 ± 2.91%). The analysis results showed the presence of flavonoid, alkaloid, tannin, and polyphenol compounds in SF. Cookies with SF:WF ration of 50:50 (w/w) (SoKis) showed the best acceptance based on organoleptic test compared to the other formulation with antioxidant activity of 36.18 ± 2.56%. In addition, soKis contained 2.715% water, 1.425% ash, 24.57% fat, 8.24% protein, 63.05% carbohydrate, 0.255% crude fiber and could support the growth of B. longum with a value of 2.46 × 10 8 CFU/mL. Based on these results, sorghum could be used and developed as a functional food ingredient.

Keywords


Antioxidant; cookies; prebiotic; sorghum

Full Text:

PDF


References

Adeyeye, S. A. O. (2016). Assessment of quality and sensory properties of sorghum–wheat flour cookies. Cogent Food and Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1245059

Agustina, L., Yuliati, N., Oktavianasari, F., & Ranumsari, M. (2021). Skrining fitokimia dan uji potensi biji sorgum (Sorgum bicolor L. Moench) sebagai serat secara in vitro. Jurnal Wiyata: Penelitian Sains dan Kesehatan, 8(1). http://dx.doi.org/10.56710/wiyata.v8i1.421

Al-Sheraji, S. H., Ismail, A., Manap, M. Y., Mustafa, S., Yusof, R. M., & Hassan, F. A. (2013). Prebiotics as functional foods: A review. Journal of Functional Foods, 5(4), 1542–1553. https://doi.org/10.1016/j.jff.2013.08.009

Amer, A. E. A., Abd El-Salam, B. A., & Salem, A. S. (2014). Effect of Moringa oleifera leaves extract as a growth factor on viability of some encapsulated probiotic bacteria. World Journal of Dairy & Food Sciences, 9(2), 86–94. https://doi.org/10.5829/idosi.wjdfs.2014.9.2.1134

Aprilia, S. E. (2015). Kualitas Cookies dengan Kombinasi Tepung Sorgum (Sorghum bicolor (L.) Moench) dan Tepung Terigu dengan Penambahan Susu Kambing [Skripsi]. Universitas Atma Jaya Yogyakarta.

Aruna, C., & Visarada, K. B. R. S. (2019). Sorghum Grain in Food and Brewing Industry. In Breeding Sorghum for Diverse End Uses (pp. 209–228). Elsevier. https://doi.org/10.1016/B978-0-08-101879-8.00013-9

Assotiation of Official Analytical Chemists (AOAC). (2007). Official Methods of Analysis. Assosiation of Chemical Chemist.

Awobusuyi, T. D., Siwela, M., & Pillay, K. (2020). Sorghum–insect composites for healthier cookies: nutritional, functional, and technological evaluation. Foods, 9(10), 1427. https://doi.org/10.3390/foods9101427

Azizah, A., & Soesetyaningsih, E. (2020). Akurasi perhitungan bakteri pada daging sapi menggunakan metode hitung cawan. Berkala Sainstek, 8(3), 75–79. https://doi.org/10.19184/bst.v8i3.16828

Benhur, D. R., Bhargavi, G., Kalpana, K., Vishala, A. D., Ganapathy, K. N., & Patil, J. V. (2015). Development and standardization of sorghum pasta using extrusion technology. Journal of Food Science and Technology, 52(10), 6828–6833. https://doi.org/10.1007/s13197-015-1801-8

Budiarti, G. I., Sulistiawati, E., Septiani, N., & Septianindi, W. (2021). Characteristics of modified banana peel flour using hydrogen rich water. Rekayasa Bahan Alam dan Energi Berkelanjutan, 5(1), 28–32. https://doi.org/10.21776/ub.rbaet.2021.005.01.05

Budiarti, G. I., Sya’bani, I., & Alfarid, M. A. (2021). Pengaruh pengeringan terhadap kadar air dan kualitas bolu dari tepung sorgum (Sorghum bicolor L). Fluida, 14(2), 73–79. https://doi.org/10.35313/fluida.v14i2.2638

Chávez, D. W. H., Ascheri, J. L. R., Carvalho, C. W. P., Godoy, R. L. O., & Pacheco, S. (2017). Sorghum and roasted coffee blends as a novel extruded product: Bioactive compounds and antioxidant capacity. Journal of Functional Foods, 29, 93–103. https://doi.org/10.1016/j.jff.2016.12.012

Dahlberg, J. (2019). The role of sorghum in renewables and biofuels. Sorghum, 269–277. https://doi.org/10.1007/978-1-4939-9039-9_19

Dávila, I., Gullón, B., Alonso, J. L., Labidi, J., & Gullón, P. (2019). Vine shoots as new source for the manufacture of prebiotic oligosaccharides. Carbohydrate Polymers, 207, 34–43. https://doi.org/10.1016/j.carbpol.2018.11.065

Dayakar Rao, B., Anis, M., Kalpana, K., Sunooj, K. V., Patil, J. V., & Ganesh, T. (2016). Influence of milling methods and particle size on hydration properties of sorghum flour and quality of sorghum biscuits. LWT - Food Science and Technology, 67, 8–13. https://doi.org/10.1016/j.lwt.2015.11.033

Dendy, D. A. V. (1992). Composite flour-past, present, and future: a review with special emphasis on the place of composite flour in the semi-arid zones. In M. I. Gomez, L. R. House, L. W. Rooney, & D. A. V. Dendy (Eds.), Utilization of Sorghum and Millets (pp. 67–74). ICRISAT.

Farrah, S. D., Emilia, E., Mutiara, E., Purba, R., & Tresno Ingtyas, F. (2022). The effect of wheat flour substitution with sorghum flour (Sorghum bicolor, L) on consumers’ preference levels for cookies. Media Pendidikan Gizi Dan Kuliner, 11(1), 11–18. https://doi.org/10.17509/xxxx.vxix

FDA. (2020). Calories: What’s in a Number? https://www.fda.gov/food/new-nutrition-facts-label/calories- new-nutrition-facts-label

Flint HJ, Duncan SH, Scott KP, Louis P. (2015). Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc., 74, 13–22; PMID:25268552. https://dx.doi.org/10.1017/S0029665114001463

Fitri, A. S., & Fitriana, Y. A. N. (2020). Analisis senyawa kimia pada karbohidrat. Sainteks, 17(1), 45. https://doi.org/10.30595/sainteks.v17i1.8536

Gargari, B. P., Namazi, N., Khalili, M., Sarmadi, B., Jafarabadi, M. A., & Dehghan, P. (2015). Is there any place for resistant starch, as alimentary prebiotic, for patients with type 2 diabetes? Complementary Therapies in Medicine, 23(6), 810–815. https://doi.org/10.1016/j.ctim.2015.09.005

Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75

Helen N., O., & Ozioma F., N. (2022). Chapter 15 - Natural products as functional food. Food Preservation and Safety of Natural Products, 207–224. https://doi.org/https://doi.org/10.1016/C2020-0-02892-6

Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8(2), 172–184. https://doi.org/10.1080/19490976.2017.1290756

Jiang, D., Wu, S., Tan, M., Wang, Q., Zheng, L., & Yan, S. (2021). The high adaptability of Hyphantria cunea larvae to cinnamic acid involves in detoxification, antioxidation and gut microbiota response. Pesticide Biochemistry and Physiology, 174, 104805. https://doi.org/10.1016/j.pestbp.2021.104805

Kamiyama,M, Moon J K, Jang H W, Shibamoto T. (2015). Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee. J. Agric. Food Chem., 63, 1996–2005.

Kang, C.-H., Kim, J.-S., Park, H. M., Kim, S., & Paek, N.-S. (2021). Antioxidant activity and short-chain fatty acid production of lactic acid bacteria isolated from Korean individuals and fermented foods. 3 Biotech, 11(5), 217. https://doi.org/10.1007/s13205-021-02767-y

Kleessen, B., Stoof, G., Proll, J., Schmiedl, D., Noack, J., & Blaut, M. (1997). Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats. Journal of Animal Science, 75(9), 2453. https://doi.org/10.2527/1997.7592453x

Martínez, I., Kim, J., Duffy, P. R., Schlegel, V. L., & Walter, J. (2010). Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS ONE, 5(11), e15046. https://doi.org/10.1371/journal.pone.0015046

Mkandawire, N. L., Kaufman, R. C., Bean, S. R., Weller, C. L., Jackson, D. S., & Rose, D. J. (2013). Effects of sorghum (Sorghum bicolor (L.) Moench) tannins on α-amylase activity and in vitro digestibility of starch in raw and processed flours. Journal of Agricultural and Food Chemistry, 61(18), 4448–4454. https://doi.org/10.1021/jf400464j

Monica, B., & Ioan, S. (2019). Functional foods. Elelmiszervizsgalati Kozlemenyek, 65(1), 2349–2360. https://doi.org/10.14302/issn.2379-7835.ijn-19-2615

Nisa, F. C. (2010). Ekstraksi antioksidan alami dari sorgum lokal varietas cokelat serta peningkatan aktivitasnya dengan perkecambahan dan gelombang mikro. Teknologi Pertanian, 11(3), 184–195.

Olurin, T. O., Ogunmoyela, O. A. B., Dudu, O. E., & Adubi, T. A. (2020). Cookies-making potentials of sorghum-wheat flour blends. Anchor University Journal of Science and Technology (AUJST), 1(2), 44–51. https://www.ajol.info/index.php/aujst/article/view/222631

Pangestu, R. F., Legowo, A. M., Al-Baarri, A. N., & Pramono, Y. B. (2017). Aktivitas antioksidan, pH, viskositas, viabilitas bakteri asam laktat (BAL) pada yogurt powder daun kopi dengan jumlah karagenan yang berbeda. Jurnal Aplikasi Teknologi Pangan, 6(2). https://doi.org/10.17728/jatp.185

Paturi, G., Nyanhanda, T., Butts, C. A., Herath, T. D., Monro, J. A., & Ansell, J. (2012). Effects of potato fiber and potato-resistant starch on biomarkers of colonic health in rats fed diets containing red meat. Journal of Food Science,77(10), H216–H223. https://doi.org/10.1111/j.1750- 3841.2012.02911.x

Pontieri, P., & Del Giudice, L. (2016). Sorghum: A Novel and Healthy Food. In Encyclopedia of Food and Health (pp. 33–42). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00637-1

Priftis, A., Stagos, D., Konstantinopoulos, K., Tsitsimpikou, C., Spandidos, D., Tsatsakis, A. M., Tsatsakis, M. N., & Kouretas, D. (2015). Comparison of antioxidant activity between green and roasted coffee beans using molecular methods. Mol. Med. Rep. 12, 7293–7302.

Rahmawati, Y. D., & Wahyani, A. D. (2021). Sifat kimia cookies dengan substitusi tepung sorgum chemical properties of cookies with sorghum flour substitution. Jurnal Teknologi Agro-Industri, 8(1).

Ratnavathi, C. V., & Komala, V. V. (2016). Sorghum Grain Quality. In Sorghum Biochemistry: An Industrial Perspective (pp. 1–61). Elsevier Inc. https://doi.org/10.1016/B978-0-12-803157-5.00001-0

Ren, M., Li, M.-Y., Lu, L.-Q., Liu, Y.-S., An, F.-K., Huang, K., & Fu, Z. (2022). Arenga pinnata resistant starch modulate gut microbiota and ameliorate intestinal inflammation in aged mice. Nutrients, 14(19), 3931. https://doi.org/10.3390/nu14193931

Risnoyatiningsih, S. (2011). Hydrolysis of starch saccharides from sweet potatoes using enzyme. Jurnal Teknik Kimia UPN Veteran Jatim, 5(2). https://doi.org/10.33005/tekkim.v5i2.146

Sang, Y., Bean, S., Seib, P. A., Pedersen, J., & Shi, Y.-C. (2008). Structure and functional properties of sorghum starches differing in amylose content. Journal of Agricultural and Food Chemistry, 56(15), 6680–6685. https://doi.org/10.1021/jf800577x

Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 8(18), 757–781). https://doi.org/10.1016/j.jff.2015.01.047

Stutts, L. R. & Vermerris, W. (2020). Elucidating anthracnose resistance mechanisms in sorghum—A Review. Phytopathology®, 110(12), 1863–1876. https://doi.org/10.1094/PHYTO-04-20-0132-RVW

Suarni (2012). Potensi sorgum sebagai bahan pangan fungsional. Iptek Tanaman Pangan, 7(1), 58–66.

Surahman, L. N., & Sofyan, I. (2017). Pengaruh Suhu dan Lama Pengeringan terhadap Karakteristik Tepung Terubuk (Saccharum edule Hasskarl) [Skripsi]. Universitas Pasundan.

Sustriawan, B., Aini, N., Setyawati, R., Hania, R., Sandi, R. T., & Irfan, R. (2021). The characteristics of cookies from sorghum flour and almond flour with variations in the type of fat. IOP Conference Series: Earth and Environmental Science, 653(1), 012128. https://doi.org/10.1088/1755-1315/653/1/012128

Wijana, S., & Meika Sari, L. (2015). Pengaruh Suhu dan Waktu Pengeringan terhadap Aktivitas Antioksidan Pada Bubuk Kulit Manggis (Garcinia Mangostana L.) [Skripsi]. Universitas Brawijaya.

Yao, S., Zhao, Z., Wang, W., & Liu, X. (2021). Bifidobacterium longum: protection against inflammatory bowel disease. Journal of Immunology Research, 2021, 1–11. https://doi.org/10.1155/2021/8030297



DOI: https://doi.org/10.22146/agritech.87733

Article Metrics

Abstract views : 1238 | views : 684

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 081336114545 Aprilia Ariestanti, Dwiki Maycellino Wiryawan, Aniek Prasetyaningsih

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats