Enhancement in Bioaccessibility and Bioavailability of Phenolic Compounds during Black Glutinous Rice Tape Fermentation
Mita Nurul Azkia(1), Widiastuti Setyaningsih(2), Yunika Mayangsari(3), Muhammad Nur Cahyanto(4*)
(1) Department of Agricultural Products Technology, Faculty of Agricultural Technology, Universitas Semarang, Semarang, Central Java 50196
(2) Departement of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(3) Departement of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(4) Departement of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Abduh, M. Y., Ramadhan, C. R., Fadhlilah, A. P., Abdul, S. D. N., & Burhan, K. H. (2022). Solid-state fermentation of groundnut (Arachis hypogaea) shell using Trichoderma sp., tape yeast, and tempeh yeast to produce cellulase. Journal of Applied Biology and Biotechnology, 10(4), 153–160. https://doi.org/10.7324/JABB.2022.100421
Adebo, O. A., & Medina-Meza, I. G. (2020). Impact of fermentation on the phenolic compounds and antioxidants activity of whole cereal grains: a mini review. Molecules, 25(4), 1–19. https://doi.org/10.3390/molecules25040927
Arruda, H. S., Pereira, G. A., de Morais, D. R., Eberlin, M. N., & Pastore, G. M. (2018). Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC-ESI-MS/MS. Food Chemistry, 245, 738–749. https://doi.org/10.1016/j.foodchem.2017.11.120
Arts, M. J. T. J., Haenen, G. R. M. M., Wilms, L. C., Beetstra, S. A. J. N., Heijnen, C. G. M., Voss, H. P., & Bast, A. (2002). Interactions between flavonoids and proteins: Effect on the total antioxidants capacity. Journal of Agricultural and Food Chemistry, 50(5), 1184–1187. https://doi.org/10.1021/jf010855a
Aryanta, W. R. (2000). Traditional fermented foods in Indonesia. Japanese Journal of Lactic Acid Bacteria, 10(2), 90–102. https://doi.org/10.4109/jslab1997.10.90
Azkia, M. N., Cahyanto, M. N., Mayangsari, Y., Briliantama, A., Palma, M., & Setyaningsih, W. (2023). Enhancement of phenolics profile and antioxidants activity of black glutinous rice (Oryza sativa var. glutinosa) due to tape fermentation. Arabian Journal of Chemistry, 16(11). https://doi.org/10.1016/j.arabjc.2023.105275
Babotă, M., Frumuzachi, O., Gâvan, A., Iacoviță, C., Pinela, J., Barros, L., Ferreira, I. C. F. R., Zhang, L., Lucini, L., Rocchetti, G., Tanase, C., Crișan, G., & Mocan, A. (2022). Optimized ultrasound-assisted extraction of phenolic compounds from Thymus comosus Heuff. ex Griseb. et Schenk (wild thyme) and their bioactive potential. Ultrasonics Sonochemistry, 84, 1–10. https://doi.org/10.1016/j.ultsonch.2022.105954
Balakrishnan, G., & Schneider, R. G. (2020). Quinoa flavonoids and their bioaccessibility during in vitro gastrointestinal digestion. Journal of Cereal Science, 9. https://doi.org/10.1016/j.jcs.2020.103070
Berton, A., Rouvellac, S., Robert, B., Rousseau, F., Lopez, C., & Crenon, I. (2012). Effect of the size and interface composition of milk fat globules on their in vitro digestion by the human pancreatic lipase: Native versus homogenized milk fat globules. Food Hydrocolloids, 29(1), 123–134. https://doi.org/10.1016/j.foodhyd.2012.02.016
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidants activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
Cañas, S., Rebollo-Hernanz, M., Braojos, C., Benítez, V., Ferreras-Charro, R., Dueñas, M., Aguilera, Y., & Martín-Cabrejas, M. A. (2022). Understanding the gastrointestinal behavior of the coffee pulp phenolics compounds under simulated conditions. Antioxidants, 11(9). https://doi.org/10.3390/antiox11091818
Casteleyn, C., Rekecki, A., Van Der Aa, A., Simoens, P., & Van Den Broeck, W. (2010). Surface area assessment of the murine intestinal tract as a prerequisite for oral dose translation from mouse to man. Laboratory Animals, 44(3), 176–183. https://doi.org/10.1258/la.2009.009112
Cervantes, L., Martínez-Ferri, E., Soria, C., & Ariza, M. T. (2020). Bioavailability of phenolic compounds in strawberry, raspberry and blueberry: Insights for breeding programs. Food Bioscience, 37, 100680. https://doi.org/10.1016/j.fbio.2020.100680
Chen, Y., Ma, Y., Dong, L., Jia, X., Liu, L., Huang, F., Chi, J., Xiao, J., Zhang, M., & Zhang, R. (2019). Extrusion and fungal fermentation change the profile and antioxidants activity of free and bound phenolics in rice bran together with the phenolics bioaccessibility. Lwt, 115. https://doi.org/10.1016/j.lwt.2019.108461
Cosme, P., Rodríguez, A. B., Espino, J., & Garrido, M. (2020). Plant phenolics: bioavailability as a key determinant of their potential health-promoting applications. Antioxidants, 9(12), 1–20. https://doi.org/10.3390/antiox9121263
Cuvas-Limon, R. B., Ferreira-Santos, P., Cruz, M., Teixeira, J. A., Belmares, R., & Nobre, C. (2022). Effect of gastrointestinal digestion on the bioaccessibility of phenolic compounds and antioxidants activity of fermented aloe vera juices. Antioxidants, 11(12). https://doi.org/10.3390/antiox11122479
Day, A. J., Cañada, F. J., Díaz, J. C., Kroon, P. A., McLauchlan, R., Faulds, C. B., Plumb, G. W., Morgan, M. R. A., & Williamson, G. (2000). Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Letters, 468(2–3), 166–170. https://doi.org/10.1016/S0014-5793(00)01211-4
Gawlik-Dziki, U., Dziki, D., Baraniak, B., & Lin, R. (2009). The effect of simulated digestion in vitro on bioactivity of wheat bread with Tartary buckwheat flavones addition. Lwt, 42(1), 137–143. https://doi.org/10.1016/j.lwt.2008.06.009
Guo, N., Zhu, Y. W., Jiang, Y. W., Li, H. K., Liu, Z. M., Wang, W., Shan, C. H., & Fu, Y. J. (2020). Improvement of flavonoid aglycone and biological activity of mulberry leaves by solid-state fermentation. Industrial Crops and Products, 148(November 2019). https://doi.org/10.1016/j.indcrop.2020.112287
Janarny, G., & Gunathilake, K. D. P. P. (2020). Changes in rice bran bioactives, their bioactivity, bioaccessibility and bioavailability with solid-state fermentation by Rhizopus oryzae. Biocatalysis and Agricultural Biotechnology, 23, 1–9. https://doi.org/10.1016/j.bcab.2020.101510
Kamiloglu, S., Tomas, M., Ozdal, T., & Capanoglu, E. (2021). Effect of food matrix on the content and bioavailability of flavonoids. Trends in Food Science and Technology, 117, 15–33. https://doi.org/10.1016/j.tifs.2020.10.030
Khan, S. A., Zhang, M., Liu, L., Dong, L., Ma, Y., Wei, Z., Chi, J., & Zhang, R. (2020). Co-culture submerged fermentation by lactobacillus and yeast more effectively improved the profiles and bioaccessibility of phenolics in extruded brown rice than single-culture fermentation. Food Chemistry, 326, 1–8. https://doi.org/10.1016/j.foodchem.2020.126985
Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24. https://doi.org/10.1016/j.btre.2019.e00370
Leksono, B. Y., Cahyanto, M. N., Rahayu, E. S., Yanti, R., & Utami, T. (2022). Enhancement of antioxidants activities in black soy milk through isoflavone aglycone production during indigenous lactic acid bacteria fermentation. Fermentation, 8(7). https://doi.org/10.3390/fermentation8070326
Liu, Y., Liu, J., Tang, C., Uyanga, V. A., Xu, L., Zhang, F., Sun, J., & Chen, Y. (2023). Flavonoids‑targeted metabolomic analysis following rice yellowing. Food Chemistry, 430. https://doi.org/10.1016/j.foodchem.2023.136984
Liu, Y., Sui, X., Zhao, X., Wang, S., & Yang, Q. (2022). Antioxidative Activity evaluation of high purity and micronized tartary buckwheat flavonoids prepared by antisolvent recrystallization. Foods, 11(9). https://doi.org/10.3390/foods11091346
Maia, I. da C., D’Almeida, C. T. dos S., Freire, D. M. G., Cavalcanti, E. d’Avila C., Cameron, L. C., Dias, J. F., & Ferreira, M. S. L. (2020). Effect of solid-state fermentation over the release of phenolics compounds from brewer’s spent grain revealed by UPLC-MSE. Lwt, 133. https://doi.org/10.1016/j.lwt.2020.110136
Marniza, Syafnil, & Fitria, S. (2020). Characterization of tapai ketan hitam with various cooking methods. Jurnal Teknologi Agro-Industri, 7(2), 112–120.
McGhie, T. K., & Walton, M. C. (2007). The bioavailability and absorption of anthocyanins: towards a better understanding. Molecular Nutrition and Food Research, 51(6), 702–713. https://doi.org/10.1002/mnfr.200700092
Mishra, D., Rout, S. K., & Kar, G. A. (2020). Evaluation of antimicrobial and antioxidants activity of crude methanol extract and its fractions of mussaenda philippica leaves. International Journal of General Medicine and Pharmacy (IJGMP), 9(2), 1–14.
Muñoz-González, I., Jiménez-Girón, A., Martín-Álvarez, P. J., Bartolomé, B., & Moreno-Arribas, M. V. (2013). Profiling of microbial-derived phenolics metabolites in human feces after moderate red wine intake. Journal of Agricultural and Food Chemistry, 61(39), 9470–9479. https://doi.org/10.1021/jf4025135
Novelina, Nazir, N., Fiana, R. M., & Putra, D. P. (2019). Characteristics of black glutinous rice vinegar as traditionally fermented product of yeast tapai and Acetobacter aceti. IOP Conference Series: Earth and Environmental Science, 347(1). https://doi.org/10.1088/1755-1315/347/1/012049
Olthof, M. R., Hollman, P. C. H., & Katan, M. B. (2001). Chlorogenic acid and caffeic acid are absorbed in humans. Journal of Nutrition, 131(1), 66–71. https://doi.org/10.1093/jn/131.1.66
Qin, W., Ketnawa, S., & Ogawa, Y. (2022). Effect of digestive enzymes and pH on variation of bioavailability of green tea during simulated in vitro gastrointestinal digestion. Food Science and Human Wellness, 11(3), 669–675. https://doi.org/10.1016/j.fshw.2021.12.024
Schmidt, C. G., Gonçalves, L. M., Prietto, L., Hackbart, H. S., & Furlong, E. B. (2014). Antioxidants activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae. Food Chemistry, 146, 371–377. https://doi.org/10.1016/j.foodchem.2013.09.101
Seraglio, S. K. T., Valese, A. C., Daguer, H., Bergamo, G., Azevedo, M. S., Nehring, P., Gonzaga, L. V., Fett, R., & Costa, A. C. O. (2017). Effect of in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds, minerals, and antioxidants capacity of Mimosa scabrella bentham honeydew honeys. Food Research International, 99, 670–678. https://doi.org/10.1016/j.foodres.2017.06.024
Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: antioxidants activity and health effects - a review. Journal of Functional Foods, 18, 820–897. https://doi.org/10.1016/j.jff.2015.06.018
Shahidi, F., & Peng, H. (2018). Bioaccessibility and bioavailability of phenolic compounds. Journal of Food Bioactives, 4, 11–68. https://doi.org/10.31665/jfb.2018.4162
Siebenhandl, S., Lestario, L. N., Trimmel, D., & Berghofer, E. (2001). Studies on tape ketan - an Indonesian fermented rice food. International Journal of Food Sciences and Nutrition, 52(4), 347–357. https://doi.org/10.1080/09637480120057585
Tanaka, T., Takase, S., & Goda, T. (1997). A possible role of a nuclear factor NF-LPH1 in the regional expression of lactase-phlorizin hydrolase along the small intestine. Journal of Nutritional Science and Vitaminology, 43(5), 565–573. https://doi.org/10.3177/jnsv.43.565
Teng, H., & Chen, L. (2019). Polyphenols and bioavailability: an update. Critical Reviews in Food Science and Nutrition, 59(13), 2040–2051. https://doi.org/10.1080/10408398.2018.1437023
Velioglu, Y. S., Mazza, G., Gao, L., & Oomah, B. D. (1998). Antioxidants activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10), 4113–4117. https://doi.org/10.1021/jf9801973
Wilson, T. H., & Wiseman, G. (1954). The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. The Journal of Physiology, 123(1), 116–125. https://doi.org/10.1113/jphysiol.1954.sp005036
Xiong, Q., Zhang, J., Sun, C., Wang, R., Wei, H., He, H., Zhou, D., Zhang, H., & Zhu, J. (2023). Metabolomics revealed metabolite biomarkers of antioxidants properties and flavonoid metabolite accumulation in purple rice after grain filling. Food Chemistry: X, 18. https://doi.org/10.1016/j.fochx.2023.100720
Xue, Y., Wang, X., Chen, X., Hu, J., Gao, M. T., & Li, J. (2017). Effects of different cellulases on the release of phenolic acids from rice straw during saccharification. Bioresource Technology, 234, 208–216. https://doi.org/10.1016/j.biortech.2017.02.127
Yang, F., Chen, C., Ni, D., Yang, Y., Tian, J., Li, Y., Chen, S., Ye, X., & Wang, L. (2023). Effects of fermentation on bioactivity and the composition of polyphenols contained in polyphenol-rich foods: a review. Foods, 12(17). https://doi.org/10.3390/foods12173315
Yilmaz, H., Gultekin Subasi, B., Celebioglu, H. U., Ozdal, T., & Capanoglu, E. (2022). Chemistry of protein-phenolic interactions toward the microbiota and microbial infections. Frontiers in Nutrition, 9(July), 1–16. https://doi.org/10.3389/fnut.2022.914118
Zeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9), 1–22. https://doi.org/10.1111/jfbc.13394
Zhang, B., Zhang, Y., Li, H., Deng, Z., & Tsao, R. (2020). A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends in Food Science and Technology, 105, 347–362. https://doi.org/10.1016/j.tifs.2020.09.029
Zheng, J., Xiong, H., Li, Q., He, L., Weng, H., Ling, W., & Wang, D. (2019). Protocatechuic acid from chicory is bioavailable and undergoes partial glucuronidation and sulfation in healthy humans. Food Science and Nutrition, 7(9), 3071–3080. https://doi.org/10.1002/fsn3.1168
Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. In Food Chemistry, 64 (4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2
Zhong, H., Xue, Y., Lu, X., Shao, Q., Cao, Y., Wu, Z., & Chen, G. (2018). The effects of different degrees of procyanidin polymerization on the nutrient absorption and digestive enzyme activity in mice. Molecules, 23(11), 1–11. https://doi.org/10.3390/molecules23112916
Zieliński, H., Wiczkowski, W., Topolska, J., Piskuła, M. K., & Wronkowska, M. (2022). Bioaccessibility of phenolic acids and flavonoids from buckwheat biscuits prepared from flours fermented by lactic acid bacteria. Molecules, 27(19). https://doi.org/10.3390/molecules27196628
DOI: https://doi.org/10.22146/agritech.92729
Article Metrics
Abstract views : 788 | views : 390Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Muhammad Nur Cahyanto, Mita Nurul Azkia, Widiastuti Setyaningsih, Yunika Mayangsari
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
agriTECH has been Indexed by:
agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.